Fandom

中文數學百科 Wiki

哥德巴赫猜想

简体 | 繁體

100个页面
创建于此维基
添加新页面
讨论0 分享

哥德巴赫猜想是一個尚未被證明的數學猜想,該猜想認為,任意大於等於四的偶數,都可以寫成兩個質數之和;另外任意大等於於七的奇數,都可寫成三個質數的和。

基本上,只要能證明「任意大於等於四的偶數,都可以寫成兩個質數之和」,就可以證明「任意大等於於七的奇數,都可寫成三個質數的和」,因為前者可直接推得後者,因此「任意大於等於四的偶數,都可以寫成兩個質數之和」為此猜想的「強」版本;「任意大等於於七的奇數,都可寫成三個質數的和」為此猜想的「弱」版本。

分解實例(一些數有不只一種分解方法):4 = 2+2、6 = 3+3、(7 = 2+2+3)、8 = 5+3、(9 = 3+3+3)、10 = 5+5 = 7+3、(11 = 7+2+2 = 5+3+3)、12 = 7+5、(13 = 7+3+3 = 5+5+3)、14 = 7+7 = 11+3、(15 = 5+5+5 = 7+5+3 = 11+2+2)、16 = 11+5 = 13+3、......。目前已知在10^{17}次方以下此定理的「強」版本(及「弱」版本)沒有反例存在。

此猜想在十八世紀就被克里斯蒂安·哥德巴赫提出(哥德巴赫認為1也是質數,故其原始的敘述與現今的版本不同),但截至目前為止,沒有人可證實(或反證)此猜想,而此猜想亦為希爾伯特第八問題的一部份,目前最接近此猜想的結果是陳景潤於1966年證出的「1+2定理」,即任意偶數都能分解成一個質數和一個可分解為為兩個質數的數的和。

參見编辑

您使用了广告屏蔽软件!


Wikia通过广告运营为用户提供免费的服务。我们对用户通过嵌入广告屏蔽软件访问网站进行了使用调整。

如果您使用了广告屏蔽软件,将无法使用我们的服务。请您移除广告屏蔽软件,以确保页面正常加载。

查看其他Fandom

随机维基